■ Some codes in R
Note: Dep var = Dependent Variable.
Ind var = Independent Variable.
Var 1 = Variable 1
Var 2 = Variable 2
a) Taking log values
lvar1 <- log(var1, base = 10)
b) Correlation Test
#install.packages (corTest)
library (corTest)
cor.test(var1, var2)
c) Unit Roots Test (without deseaonalisation)
# install.packages(fUnitRoots)
library(fUnitRoots)
d) Testing Unit Root at Level (ADF)
adfTest (lvar1, lags = 0, type = "c")
e) Taking 1st difference
d.var1 <-diff (var1)
f) Lag selection criteria
#install.packages (vars)
library (vars)
Say,
kk <-cbind (lvar1, lvar2, ... lvarn)
VARselect (kk) $selection
g) Co Integration (Johannessen)
Say,
JC1 <- ca.jo (kk, type = "trace", ecdet = "none", K =3)
h) Eigen Value Stat
JC1 <- ca.jo (kk, type = "eigen", ecdet = "none", k = 3)
i) VECM (in p - 1 lags)
Say,
model1 = VECM (data.frame (vars), lag = n, r = m, estim = "ML")
where, r = no. of co integrating relationship (will discuss later)
j) Impulse Response Function
plot (irf (model1, n.ahead=10))
for 10 periods.
k) Multicollinearity in R
Packages are - car, faraway, VIF, fmsb, HH.
Say,
#install.packages (faraway)
library (faraway)
model1 = lm (depvar~ind vars)
faraway : : vif (model1)
The result obtained should be less than 5.
l) Serial Correlation in R
Box.Test (var, lag = n, type = "Ljung-Box")
Box.Test (var, lag = n, type = "Box-Pierce")
Serial correlation if exist we can make the model into GARCH.
m) Heteroscedasticity in R
#install.packages (lmtest)
model1 = lm (var1~ var2)
bp test (model1) Breush Pagan test
n) Normality Test
Shapiro - Wilk test
Say a hypothetical test
c < - LC $ variable [1:n]
shapiro.test (c)
If the result p value is more than .05 then the data is normally distributed.
o) Ramsey Test
#install.packages (lmtest)
library (lmtest)
model1 = lm (var 1 ~ var 2)
resettest (model1)
Let's see the results, Ho: There's linearity in model.
If the p value is more than .05 then our null hypothesis is accepted then linearity in the model.
To be contd...
Aditya Pokhrel
P.S Comments are lauded
No comments:
Post a Comment